Skip to main content

Right-Angled Trigonometry

Syllabus

review and use the trigonometric ratios to find the length of an unknown side or the size of an unknown angle in a right-angled triangle

Trigonometry is used to calculate unknown side lengths and angles of triangles.

Before you can perform any trigonometric calculations you need to be able to identify the sides of a right-angled triangle. The sides are labeled relative to the position of the given angle as shown below:

Important

The trigonometric ratios are as follows:

  • sinA=Opposite (opp)Hypotenuse (hyp)\sin A=\dfrac{\text{Opposite (opp)}}{\text{Hypotenuse (hyp)}}
  • cosA=Adjacent (adj)Hypotenuse (hyp)\cos A=\dfrac{\text{Adjacent (adj)}}{\text{Hypotenuse (hyp)}}
  • tanA=Opposite (opp)Adjacent (adj)\tan A=\dfrac{\text{Opposite (opp)}}{\text{Adjacent (adj)}}
note

These are available on your reference sheet

Finding Side Lengths

To find an unknown side length using right-angled trigonometry you need to know at least one acute angle and one side length. Using the known variables and the unknown side, choose the appropriate ratio and substitute in your values. Solve the equation to find the unknown length.

note

If you know two sides of a right-angled triangle you can use Pythagoras' theorem (a2+b2=c2a^2+b^2=c^2, where cc is the hypotenuse) to find the last side.

Find the value of xx rounded to 3 significant figures.

Solution
tanθ=oppadj(Choose the appropriate ratio)tan37=x11(Substitute)11×tan37=x(Multiply both sides by 11)x=8.289...x8.29 mm(Rounded to appropraite numberof s.f. and include units)\begin{aligned} \tan\theta&=\frac{\text{opp}}{\text{adj}}&&\text{(Choose the appropriate ratio)}\\ \tan37^\circ&=\frac{x}{11}&&\text{(Substitute)}\\ 11\times\tan37^\circ&=x&&\text{(Multiply both sides by 11)}\\ x&=8.289...\\ x&\approx8.29\text{ mm}&&\text{(Rounded to appropraite number}\\ &&&\text{of s.f. and include units)} \end{aligned}

Finding Angles

To find an unknown angle using right-angled trigonometry you need to know at least two side lengths. Using the known sides, choose the appropriate ratio and substitute in your values. Solve the equation to find the unknown angle.

note

If you know two angles in a triangle you can use angle sum (180180^\circ) to find the last angle.

Find the value of θ\theta correct to 3 s.f.

Solution
sinθ=opphyp(Choose the appropriate ratio)sinθ=37(Substitute)θ=sin1(37)qj3P7)=θ=25.3769...θ25.4(Rounded to appropraite numberof s.f. and include units)\begin{aligned} \sin\theta&=\frac{\text{opp}}{\text{hyp}}&&\text{(Choose the appropriate ratio)}\\ \sin\theta&=\frac{3}{7}&&\text{(Substitute)}\\ \theta&=\sin^{-1}\left(\frac{3}{7}\right)&&{\text{\htmlClass{casio}{qj3P7)=}}}\\ \theta&=25.3769...\\ \theta&\approx25.4^\circ&&\text{(Rounded to appropraite number}\\ &&&\text{of s.f. and include units)} \end{aligned}