Skip to main content

Index Laws

Syllabus

use index laws and surds

Index Notation

Index notation is used to represent expressions that deal with numbers that are repeatedly multiplied together.

If nn is a positive integer, then an=a×a×a××an factorsa^n=\underbrace{a\times a\times a\times \dots\times a}_{n\text{ factors}}.

aa is known as the base and nn is known as the power, index or exponent.

Index Laws

You should be familiar with the following index laws from previous years.

Important
  • am×an=am+na^m\times a^n=a^{m+n}

  • aman=amn\dfrac{a^m}{a^n}=a^{m-n}

  • (am)n=amn\left(a^m\right)^n=a^{mn}

  • (ab)m=ambm(ab)^m=a^mb^m

  • (ab)m=ambm\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}

  • a0=1,a0a^0=1, a\neq0

  • am=1ama^{-m}=\dfrac{1}{a^m}

  • amn=(an)m=amna^{\frac{m}{n}}=\left(\sqrt[n]{a}\right)^m=\sqrt[n]{a^m}

You should recall from the last index law listed above, surds can be expressed as indices and vice versa.

Simplify the following:

  1. 6a×366^a\times36

  2. (2a2bc)3bc2\dfrac{\left(2a^2bc\right)^3}{bc^2}

Solution
6a×36=6a×62(express both numbers in terms of the same base)=6a+2(add indices when multiplying numbers with equal base)\begin{aligned} 6^a\times36&=6^a\times6^2&&\text{(express both numbers in terms of the same base)}\\ &=6^{a+2}&&\text{(add indices when multiplying numbers with equal base)} \end{aligned}